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1. Configuration of Optical Tweezers System

A more detailed configuration of optical tweezer system is presented here. In the 
hardware section, elastically scattered light is collected by means of a 5% laser pickoff 
beamsplitter (BSF10-B, Thorlabs, New Jersey, USA) before the collection of sCMOS 
detector. An f = 500 mm lens (AC508-500-B-ML, Thorlabs, New Jersey, USA) is coupled 
with the camera. The images recorded by sCMOS are used to monitor the motion of trapped 
particles. Besides, considering the refractive index (RI) difference between samples, a 
neutral density filter was utilized in the high RI sample measurement to prevent pixel 
saturation. A bright-field CCD camera (DCU224M, Thorlabs, New Jersey, USA) allows 
visualization of the sample and assists optical trapping. In addition, a gradient neutral 
density filter（NDC-25C-4, Thorlabs）rotated by closed-loop step motor was applied for 
power reduction for strong and weak stiffness measurement. In the software section, 
devices including camera, shutter etc., are controlled via the program written by LabVIEW 
2014 (National Instruments, Austin, USA). The user can define several parameters through 
the program interface, including the laser power, as well as frame rates and video length of 
optical tweezer camera.
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2. Data Preprocessing of 1D position series extraction

The non-circular symmetric polarization of the laser makes the optical stiffness higher 
along the axis of stronger polarization. As a result, we can clearly see that the contour shape 
shown in Figure 1c in the main text is not circular but elliptical. We extracted the position 
distribution along two perpendicular directions, which was shown in Figure S1 a, and 
calculated the size along each direction based on Eq. (1) and (2), with their results as shown 
in Figure S1 b. It can be clearly seen that more accurate size is estimated from the “long 
axis” direction, for which the trapping stiffness is the lowest and nanoparticle motion most 
rigorously satisfies the diffusion approximation. Hence, the position series along long axis 
(blue line in Figure S1a) maintains the most accurate characteristics and were used as input 
of training network.

Figure S1 (a) Two position series extracted from perpendicular directions from 2D 
position series shown in Figure 1(c) in original text. (b) Variance of displacement 
versus time lag in each direction. Inset shows the linear fit through the first three points 
and corresponding size estimation results.

3. Sample Preparation and Nanoparticle Tracking Analysis (NTA) 

For PS and Silica suspensions, original solutions were diluted > 10000 times and 
sonicated for 10 minutes to avoid aggregation. Finally, nanoparticle solutions were filtered 
using polycarbonate filters (Millipore) with 220 nm pore size. For the isolation of human 
platelet-free plasma (PFP) derived EVs, 100 μL of thawed PFP was diluted to 1 mL with 
PBS and transferred to a 3 mL ultracentrifuge tube of a Beckman Coulter Optima MAX-
XP ultracentrifuge equipped with a TLA100.3 rotor. After the first ultracentrifugation step 
at 100 000g for 30 min at 4 °C, the pellet was washed with 1 mL of PBS for the second 
ultracentrifugation step at 100 000g for 17 min at 4 °C. Afterward, the PFP EVs were 



resuspended in 50 μL of PBS for optical trapping. 
NTA (NS300, Malvern, UK) was performed within the NTA chamber with 

approximately 1 mL solution. Before and after each measurement the sample chamber was 
rinsed with ultrapure water. Three consecutive 30-second videos were recorded for each 
sample. Shutter and gain settings were optimized for each sample. The number distributions 
were used to verify EVs size distributions in the main text section 3.3.

3. Optical Stiffness Determined by Thermal Motion Analysis

A trapped particle in the optical tweezers obey restricted Brownian motion near the 
center, with its position distribution probability density P(x) obeying Boltzmann's law and 
could be written as:

                        𝑃(𝑥) = c ∗ exp ( ―E(x)
k𝐵T )                         (S1)

Where E(x) represents the potential of particle, c is a normalization constant. The potential 
near the center can be simplified as a simple harmonic potential, then P(x) could be further 
simplified as a Gaussian distribution representation：

                    𝑃(𝑥) = c ∗ exp ( ―Kx2

k𝐵T )                         (S2)

Here K represents trap stiffness. Hence, once a large number of the position is measured, 
stiffness K could be obtained by the position distribution probability fitting analysis. Figure 
S2 shows the thermal motion analysis of trapped individual PS200nm nanoparticle. To 
extract the actual potential E(x) from the histogram we calculate the logarithm of the 
frequency in Figure S2a and multiply it by kBT (Figure S2b). This is fitted numerically by 
a harmonic potential with a stiffness constant K= 25 pN/μm.

Figure S2 (a) Histogram of the PS200nm nanoparticle position fluctuation according to 
Figure 1a in the main text. (b) Energy profile for the trapped nanoparticle calculated from 
the histogram in (a) using Boltzmann statistic. The solid blue line shows a parabolic fit 
assuming a harmonically constrained Brownian particle.



Figure S3 An example of the ResNet network training-testing loss curve.

4. Adjusted Lorentzian Fitting on Power Spectra Analysis

To acquire the size for a stable trapped nanoparticle, the adjusted Lorentzian model 
that accounts for motion blur, aliasing and potion detection error are applied for fitting to 
the power spectra acquired by camera-based position measurement, which could be written 
as1:

    𝑆𝑎𝑑(𝑓) = ∑∞
𝑛=―∞ S 𝑓 + 2𝑛𝑓𝑁𝑦𝑞 × ( sin (𝑊𝜋 𝑓 + 2𝑛𝑓𝑁𝑦𝑞 )

𝑊𝜋(𝑓 + 2𝑛𝑓𝑁𝑦𝑞) )
2

+ 𝜀2/2𝑓𝑁𝑦𝑞   (S3)

Where W, 𝑓𝑁𝑦𝑞 and 𝜀2 represent the acquisition time of camera, the Nyquist 
frequency (which equals to half of the sampling frequency) and position detection error of 
our optical tweezer system, S represents for typical power spectrum of the particle trapped 
in a harmonic potential well, which could be described by a Lorentzian model:

                        𝑆(𝑓) =
𝑘𝑏𝑇

2π2𝛾(𝑓2 + 𝑓2
𝑐)                        (S4)

In which 𝑘𝑏 and T are the Boltzmann constant and absolute temperature respectively, 
𝛾 and 𝑓𝑐 are the viscous drag coefficient and corner frequency, which could be written as 
a function of stiffness K and diameter d:

                            𝛾 = 3πηd                            (S5)
                           𝑓𝑐 = 𝐾/2π𝛾                           (S6)

Prior knowledge is given based on the experimental acquisition settings and measurement. 
Specifically, we have W= 10μs, 𝑓𝑁𝑦𝑞=3000Hz, 𝜀2=13.2nm2, and K, d are the only 
parameters to be fitted. Adjusted Lorentzian fitting was performed in MATLAB using the 
‘lsqnonlin’ function. Taking PS100nm nanoparticles as examples, the initial guess of the 
K, d is set as 10 pN/μm and 100nm respectively. The above parameters are set as the mean 



based on priori experimental measurement for the highly heterogenous EVs, which is 30 
pN/μm and 180nm, respectively. The summation is stopped at n= ± 3, sufficiently 
accounting for the blurring effect.

Figure S4 Measured power spectra (blue) with adjusted Lorentzian fits (green) for 
individual PS100nm (a) and EVs (b) respectively, the fit sizes are 113nm and 182nm 
respectively.

5. CNN-based Sizing Prediction Networks and its Performance 

   In the main text (Section 3.3), it was mentioned that we compare the performance of 
ResNet to different algorithms such as adjusted Lorentzian fitting or CNN-based sizing 
networks. Given that our datasets of constrained Brownian motion of trapped nanoparticles 
are one-dimensional, and the well-known ability of CNNs is to extract both global and local 
features, we adapted the 1D CNN-based regression model proposed in our previous work2 
for comparisons after slight modification to the output layer as shown schematically in 
Figure S4. Briefly, the network contains five convolutional layers in which filters are 
learned which extract the particle’s dynamic features from the time series measurements of 
the particle position (input data). Each convolution layer learns a series of filters (8, 16, 32, 
64, 64 filters in layers 1 through 5, respectively) with filter kernel sizes of 1×5. The 
convolutional layers are then followed by the batch normalization and rectified linear unit 
layers to enable better generalization and speed up the network training. The average 
pooling layer (Avg Pooling) with a pooling area of size 2 and stride of 2 is added after the 
first three convolution layers. At the end is the flatten layer, and finally a fully connected 
layer responsible for the regression. 
  



Figure S5 (a) CNN architecture for nanoparticles size prediction. Inset shows the network 
training-validation loss curve. CNN prediction performance using both simulated (b) and 
experimental (c) datasets of polystyrene (PS), silica nanospheres, and extracellular vesicles 
(EVs).

Table S1 RMSEP (nm) of the particle size predictions by CNN on the simulated and 
experimental datasets considering different time series lengths
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Figure S6 (a) Establishment of a linear regression model to restore the sizing performance 
of experimental EVs data. (b-c) Based on the model determined by (a), the restored sizing 
performance of experimental EVs data when using 1/2 or 1/6th of the full frames. Red lines 
represent lines of perfect agreement.



Figure S7 The relationship between sizing RMSEP and number of frames used for EVs 
calculation under weak-stiffness trapping condition (red line), the shaded regions indicate 
the standard deviation for the whole datasets.

Figure S8 (a) Experimental Sizing performance of re-trained ResNet network by using the 
120000 1000-frames simulated EVs. (b) Additional linear regression was used to restore the 
sizing performance. The regression model used here is identical to the previous model 
shown in Figure S6 (a). Red lines represent lines of perfect agreement.

6. EVs Refractive Index Analysis based on Mie Theory

Since the difference in scattering intensities for the particle size and focal volumes are 
negligible in our optical tweezer system, standard Mie theory instead of Generalized 



Lorenz-Mie Theory3 (GLMT) was employed for refractive index quantitative analysis. The 
backward scattering intensity collected by sCMOS camera could be written as:

min

2 2
BS 1 22

2 1I = ( ) sin
2

BS S S d
k





  
Where parameters S1 and S2 are the scattering matrix elements and calculated using the 
MATLAB routines of Mätzler4, k and θ represent wave number and polar angle, 
respectively, and θ is limited by numerical aperture (NA=𝑛𝑚𝑠𝑖𝑛𝛼) of the objective. where 
nm is the refractive index of the medium and α is the maximum propagation angle, θmin

= 𝜋 ― sin―1 𝛼. And the scalar αBS is introduced in order to take the power of the laser 
beam and the camera setting into account in the numerical computations. Practically, the 
calibration of this factor is done by matching theoretical Mie scattering intensities with 
experimental measurements on NIST standard nanoparticles, as shown in Figure S7 a. 
Backward scattering intensity of trapped nanoparticles could be quantified by using the 16-
bit images collected by sCMOS camera, while it is fluctuated due to axial constrained 
Brownian motion. To reduce the Poisson noise, we delete intensity outliers during time (I> 
Mean± 3STD) and regard that nanoparticle is at focus when the maximum scattering 
intensity is detected. To avoid pixel saturation, a neutral density filter is employed when 
measuring PS200nm nanoparticles.

Figure S9 (a) Fitting between Scattering intensity of polystyrene beads to Mie theory 
curves, inset shows accumulation region based on centroid of particle image. Error bars 
indicate one standard deviation of the mean. (b) RI of plasma-derived EVs separated by 
UC and SEC along with gradient Mie theory curves, using the scalar fitting coefficient 
determined in (a). 

Table S2  The average Size and Refractive index (RI) of PFP-derived vesicles predicted 
by ResNet



SEC UC
Size(nm) 120±25 155±36

RI 1.42±0.06 1.40±0.04
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